从0开始知识蒸馏

翻译自 https://keras.io/examples/vision/knowledge_distillation/#train-student-from-scratch-for-comparison

View in ColabGitHub source

更多关于蒸馏和模型推理加速的知识可参考博客《预训练模型参数量越来越大?这里有你需要的BERT推理加速技术指南

知识蒸馏简介

知识蒸馏是一个模型压缩的过程,其中训练一个小的(学生)模型来匹配一个大的预训练(教师)模型。通过最小化损失函数将知识从教师模型转移到学生,旨在匹配软化的教师逻辑和真实标签。

通过在 softmax 中应用“温度”缩放函数来软化对数,有效地平滑概率分布并揭示老师学到的类间关系。

设置

1
2
3
4
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np

构造 Distiller()

自定义Distiller()类,覆盖Model方法train_steptest_step以及compile()。为了使用蒸馏器,我们需要:

  • 已经训好的教师模型
  • 要训练的学生模型
  • 关于学生预测和 ground-truth 之间差异的学生损失函数
  • A distillation loss function, along with a temperature, on the difference between the soft student predictions and the soft teacher labels
  • 一个alpha因素加权学生和蒸馏损失
  • 学生和(可选)指标的优化器来评估性能

在该train_step方法中,我们执行教师和学生两者的 forward pass,计算student_lossdistillation_loss的加权损失(alpha1 - alpha),并执行 backward pass。Note: only the student weights are updated, and therefore we only calculate the gradients for the student weights.

test_step方法中,我们在提供的数据集上评估学生模型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class Distiller(keras.Model):
def __init__(self, student, teacher):
super(Distiller, self).__init__()
self.teacher = teacher
self.student = student

def compile(
self,
optimizer,
metrics,
student_loss_fn,
distillation_loss_fn,
alpha=0.1,
temperature=3,
):
""" Configure the distiller.

Args:
optimizer: Keras optimizer for the student weights
metrics: Keras metrics for evaluation
student_loss_fn: Loss function of difference between student
predictions and ground-truth
distillation_loss_fn: Loss function of difference between soft
student predictions and soft teacher predictions
alpha: weight to student_loss_fn and 1-alpha to distillation_loss_fn
temperature: Temperature for softening probability distributions.
Larger temperature gives softer distributions.
"""
super(Distiller, self).compile(optimizer=optimizer, metrics=metrics)
self.student_loss_fn = student_loss_fn
self.distillation_loss_fn = distillation_loss_fn
self.alpha = alpha
self.temperature = temperature

def train_step(self, data):
# Unpack data
x, y = data

# Forward pass of teacher
teacher_predictions = self.teacher(x, training=False)

with tf.GradientTape() as tape:
# Forward pass of student
student_predictions = self.student(x, training=True)

# Compute losses
student_loss = self.student_loss_fn(y, student_predictions)
distillation_loss = self.distillation_loss_fn(
tf.nn.softmax(teacher_predictions / self.temperature, axis=1),
tf.nn.softmax(student_predictions / self.temperature, axis=1),
)
loss = self.alpha * student_loss + (1 - self.alpha) * distillation_loss

# Compute gradients
trainable_vars = self.student.trainable_variables
gradients = tape.gradient(loss, trainable_vars)

# Update weights
self.optimizer.apply_gradients(zip(gradients, trainable_vars))

# Update the metrics configured in `compile()`.
self.compiled_metrics.update_state(y, student_predictions)

# Return a dict of performance
results = {m.name: m.result() for m in self.metrics}
results.update(
{"student_loss": student_loss, "distillation_loss": distillation_loss}
)
return results

def test_step(self, data):
# Unpack the data
x, y = data

# Compute predictions
y_prediction = self.student(x, training=False)

# Calculate the loss
student_loss = self.student_loss_fn(y, y_prediction)

# Update the metrics.
self.compiled_metrics.update_state(y, y_prediction)

# Return a dict of performance
results = {m.name: m.result() for m in self.metrics}
results.update({"student_loss": student_loss})
return results

创建学生和教师模型

最初,我们创建了一个教师模型和一个较小的学生模型。这两个模型都是卷积神经网络,使用Sequential(),但可以是任何 Keras 模型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Create the teacher
teacher = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(256, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding="same"),
layers.Conv2D(512, (3, 3), strides=(2, 2), padding="same"),
layers.Flatten(),
layers.Dense(10),
],
name="teacher",
)

# Create the student
student = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(16, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding="same"),
layers.Conv2D(32, (3, 3), strides=(2, 2), padding="same"),
layers.Flatten(),
layers.Dense(10),
],
name="student",
)

# Clone student for later comparison
student_scratch = keras.models.clone_model(student)

准备数据集

用于训练教师和提炼教师的数据集是 MNIST,该过程对于任何其他数据集都是等效的,例如CIFAR-10,具有合适的模型选择。学生和教师都在训练集上接受训练,并在测试集上进行评估。

1
2
3
4
5
6
7
8
9
10
# Prepare the train and test dataset.
batch_size = 64
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# Normalize data
x_train = x_train.astype("float32") / 255.0
x_train = np.reshape(x_train, (-1, 28, 28, 1))

x_test = x_test.astype("float32") / 255.0
x_test = np.reshape(x_test, (-1, 28, 28, 1))

Train the teacher

在知识蒸馏中,我们假设老师是经过培训和固定的。因此,我们首先以通常的方式在训练集上训练教师模型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Train teacher as usual
teacher.compile(
optimizer=keras.optimizers.Adam(),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()],
)

# Train and evaluate teacher on data.
teacher.fit(x_train, y_train, epochs=5)
teacher.evaluate(x_test, y_test)
Epoch 1/5
1875/1875 [==============================] - 248s 132ms/step - loss: 0.2438 - sparse_categorical_accuracy: 0.9220
Epoch 2/5
1875/1875 [==============================] - 263s 140ms/step - loss: 0.0881 - sparse_categorical_accuracy: 0.9738
Epoch 3/5
1875/1875 [==============================] - 245s 131ms/step - loss: 0.0650 - sparse_categorical_accuracy: 0.9811
Epoch 5/5
363/1875 [====>.........................] - ETA: 3:18 - loss: 0.0555 - sparse_categorical_accuracy: 0.9839

Distill teacher to student

我们已经训练了教师模型,我们只需要初始化一个 Distiller(student, teacher)实例,compile()它具有所需的损失、超参数和优化器,并将教师提炼给学生。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Initialize and compile distiller
distiller = Distiller(student=student, teacher=teacher)
distiller.compile(
optimizer=keras.optimizers.Adam(),
metrics=[keras.metrics.SparseCategoricalAccuracy()],
student_loss_fn=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
distillation_loss_fn=keras.losses.KLDivergence(),
alpha=0.1,
temperature=10,
)

# Distill teacher to student
distiller.fit(x_train, y_train, epochs=3)

# Evaluate student on test dataset
distiller.evaluate(x_test, y_test)
Epoch 1/3
1875/1875 [==============================] - 242s 129ms/step - sparse_categorical_accuracy: 0.9761 - student_loss: 0.1526 - distillation_loss: 0.0226
Epoch 2/3
1875/1875 [==============================] - 281s 150ms/step - sparse_categorical_accuracy: 0.9863 - student_loss: 0.1384 - distillation_loss: 0.0185
Epoch 3/3
399/1875 [=====>........................] - ETA: 3:27 - sparse_categorical_accuracy: 0.9896 - student_loss: 0.1300 - distillation_loss: 0.0182

从头开始训练学生进行比较

我们还可以在没有老师的情况下从头开始训练一个等效的学生模型,以评估通过知识蒸馏获得的性能提升。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Train student as doen usually
student_scratch.compile(
optimizer=keras.optimizers.Adam(),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()],
)

# Train and evaluate student trained from scratch.
student_scratch.fit(x_train, y_train, epochs=3)
student_scratch.evaluate(x_test, y_test)
Epoch 1/3
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4731 - sparse_categorical_accuracy: 0.8550
Epoch 2/3
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0966 - sparse_categorical_accuracy: 0.9710
Epoch 3/3
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0750 - sparse_categorical_accuracy: 0.9773
313/313 [==============================] - 0s 963us/step - loss: 0.0691 - sparse_categorical_accuracy: 0.9778

[0.06905383616685867, 0.9778000116348267]

如果教师接受了 5 个完整的 epochs 训练,而学生在这个教师身上被提炼了 3 个完整的 epochs,那么在这个例子中,与从头开始训练相同的学生模型相比,甚至与教师本身相比,都得到了性能提升。


从0开始知识蒸馏
http://example.com/2021/07/27/2021-07-27-从0开始知识蒸馏/
作者
NSX
发布于
2021年7月27日
许可协议